If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30v^2+144v-30=0
a = 30; b = 144; c = -30;
Δ = b2-4ac
Δ = 1442-4·30·(-30)
Δ = 24336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{24336}=156$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-156}{2*30}=\frac{-300}{60} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+156}{2*30}=\frac{12}{60} =1/5 $
| 2x+17=2(4x-19) | | 4.5*3.2=x | | F(x)=3x+9/x-2 | | 5(2x+1)=2(x+2) | | 4x-19=2(2x+17) | | 6-3n/9-5n+2/6=5 | | 3x-56=38 | | (3c-2)-7c=40-2c | | -9(w-6)=-5w+38 | | x²+91x+36=0 | | 2/3(4x+11)=3x+5 | | 9(0.b+0.5)=11.7 | | 3(y+2)=4(y−1)+10 | | 3n-5=-8(6+5n)= | | -3r-1=3 | | 2x(4x-1)=0 | | p-55=8 | | 2w-1=13w= | | 2(b+3)+4-b=b+8 | | d-8=1 | | 5+x÷8=-2 | | 3n-5=-8(6+5n= | | 2x+19=27-6x | | Y^+5y=0 | | 12y-3y-12=5(y-2)-6 | | 3(n+0.8)=3.86 | | 9(2x+3)=-36-27(x=2) | | 5x+6=66-5x | | 8n3=36 | | 49+3x=56 | | 5x+9=27-4x | | 10-x/2=3 |